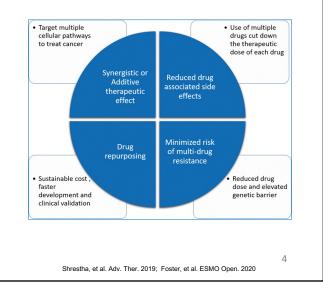


To provide an overview of the strategy for development and design of early phase combination drug studies in pediatric oncology

Key Points

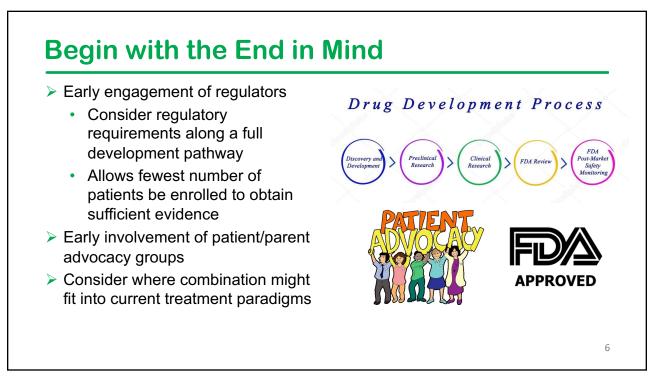

- Combinations should be developed based on the following:
 - Biology of childhood (not adult) cancers
 - Mechanism of action of the drugs (rather than adult indication)
 - Robust preclinical evaluation from *in vivo* models (genomically characterized)
 - Clinical activity for the agent (when known)
- Trials should be dose and schedule confirmatory, rather than exploratory, and move seamlessly to expansion cohorts or phase 2 in tumor or target of interest (efficiency is key!)
- Novel trial designs and randomization should be considered to improve efficiency and isolate effects (toxicity and anti-tumor) of novel agent
- · Strategy should consider agent or combination's ultimate role in frontline therapy
- · Early engagement of regulators and regulatory requirements for all drugs in essential
- Involving parent and patient advocates early and throughout development is critical

Moreno, et al. Nat Rev Clin Oncol. 2017; Pearson, et al. Eur J Cancer. 2016; 3 Pearson, et al. Lancer Oncol. 2017; Moreno, et al. J Clin Oncol. 2023

3

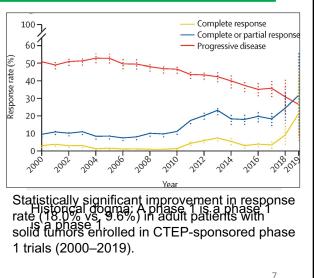
Why Test Combinations in Early Phase Studies?

- Cornerstone of curative therapy
- Numerous benefits
 - Minimize risk of drug resistance
 - Target multiple cellular pathways
 - Reduce toxicity if non-overlapping
- Combination approaches more efficacious than the same agents used alone
 - Single agent activity predicts activity in combination trials
- Goals are to efficiently determine safe dose/schedule and identify early signals of activity



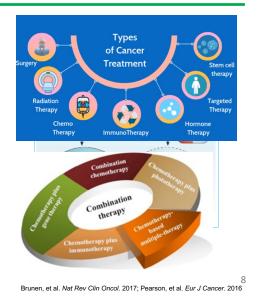
General Principles of Peds Early Phase Trials

Component	Recommendations	Rationale
Dose-finding or dose- confirmation phase	Starting dose: If a drug has neither serious dose-related toxicities nor a narrow therapeutic index: Adult RP2D (if known) corrected for patient size (BSA or weight) Objectives: Confirm toxicity profile, RP2D, and preliminary PK parameters with minimal dose ranging Extrapolation from data in adults should be considered, when possible ²⁸	Pediatric RP2D of most molecularly targeted drugs range between 90% and 130% of the BSA-adjusted RP2D for adults and, in the absence of DLT, is often based on $PKs^{20,21}$
Expansion cohorts	Early signals of antitumor activity Additional PK, PD, and safety data including young children and infants Opportunity to evaluate a child-friendly oral formulation that was not available at the start of trial	Generate activity data to inform potential late-phase trials in target population of interest

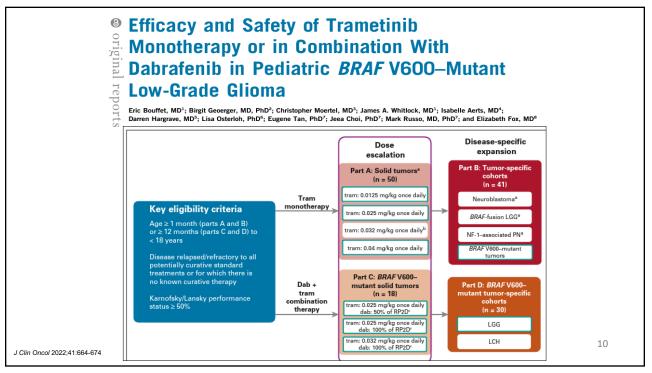

- Seamless transition between dose-finding/confirmation and efficacy (Phase 1/2)
- · Age-specific cohorts discouraged for majority of cohorts
 - No differences in PK of cytotoxic drugs between younger and older age cohorts
 - Additional PK/PD in kids ≤ 2 years can be obtained during PK expansion
- Age-appropriate (liquid) formulations are important, but shouldn't delay opening
- Incorporating correlative trials is a crucial (biomarkers of response/non-response)

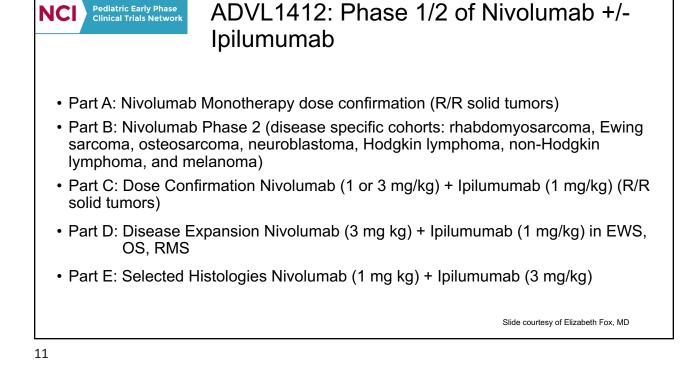
Moreno, et al. J Clin Oncol. 2023; Doz, et al. Br J Cancer.2011; Mosse, et al. Lancet Oncol. 2013. Vassal, et al. J Clin Oncol. 2003

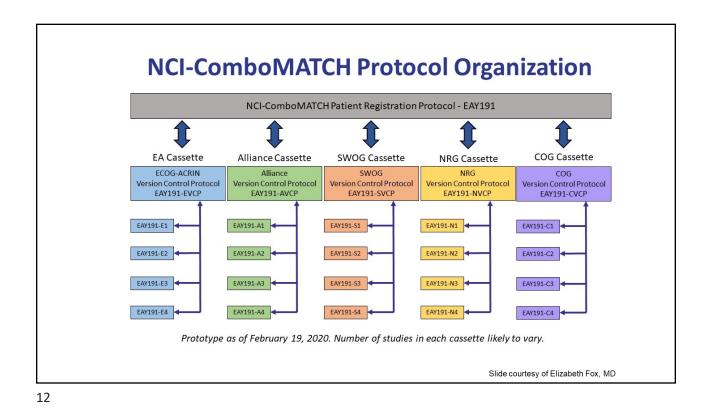
Therapeutic Misconception or Therapeutic Intent?

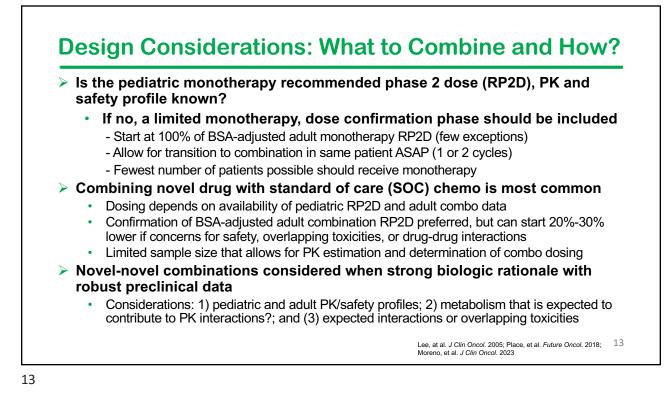

- Perception that phase 1 trials offer no potential benefit should be challenged
- Combination trials increase the likelihood for therapeutic benefit
- Therapeutic intent should guide early
 phase trial design considerations
 - Minimize single-agent evaluations
 - Avoid subtherapeutic doses, consider intra-subject dose escalation
 - Limit # of dose levels
 - Rapid assessment of agent efficacy, moving to disease specific cohorts early
 - Randomization when feasible
 - Use of novel trial designs (e.g. platform trials) to improve efficiency

Chihara, et al. Lancet. 2022; Moreno, et al. J Clin Oncol. 2023

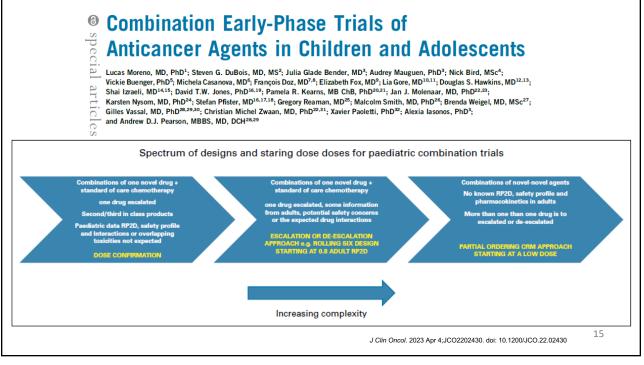

So Many (Potential) Combos, So Few Patients


- Combinations with cytotoxics vs. novel agents vs. other?
- How much preclinical data required? Adult data?
- Prioritization of agents should consider:
 - 1. Knowledge of tumor biology
 - 2. Molecular drivers of disease
 - 3. Drug's mechanism of action
 - 4. Activity of combo in relevant *in vivo* preclinical models (additive or synergistic); synthetic lethality?
 - 5. Therapeutic unmet needs
- Is there single agent activity?




Design Considerations: Who to include?

- All-comers vs. enriched population (histology, molecular) vs. all comers in dose-finding/confirmation with enrichment in efficacy phase/expansions
 - Enrichment is the prospective use of any patient/tumor characteristic to select a study population in which detection of a drug effect is more likely than in an unselected population
- Antitumor activity should be evaluated in enriched populations, by disease or biomarker, to determine future clinical development
- Patients with prior exposure to single-agent therapy may (should?) be included

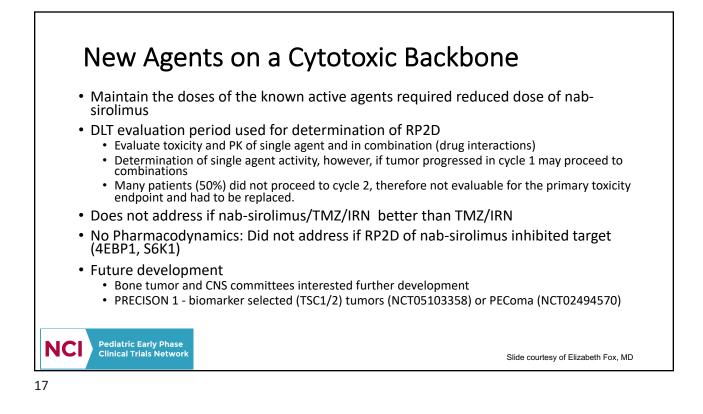


Multiple approaches to escalate novel agent vs. SOC chemo vs. other novel

- Novel agent typically escalated/de-escalated first, goal is fewest dose levels possible
- Rolling six or 3+3 designs common
- Newer designs (POCRM) allow for more efficient and accurate identification of combination dose/schedule and allow for tailoring which drug is modified in each cohort
- Pre-specified rules for which drugs will be escalate/de-escalated if excess toxicity or exposure below what's predicted to be needed from adult studies
- Toxicity considerations
 - Mechanism-based synergistic toxicity
 - Acceptable vs. unacceptable toxicity
 - Class effects and known toxicities should usually be excluded as DLTs
 - QOL and PRO measures, advocates' input, important to assess tolerability

New Agents Combined with Cytotoxic Therapy

Nab-sirolimus is albumin-bound mTOR inhibitor (sirolimus)


Primary Endpoint: DLTs in Cycle 1 and 2 to determine MTD

- Cycle 1 Monotherapy: nab-Sirolimus IV Days 1 and 8 of cycle 1 (cycle=21d),
- Cycle 2+ Combination: nab-Sirolimus administered IV on day 1, 8 in with Temozolomide (TMZ) +Irinotecan (IRN) day 1-5

Dose Level	Nab Sirolimus Dose	TMZ/IRN PO daily x 5	# patients DLT/Course	DLT
DL1	35 mg/m ²	125/90 mg/m ²	N=2 in Cycle 1	Thrombocytopenia
(n=5)	35 mg/m ²	125/90 mg/m ²	N=1 in Cycle 2	Thrombocytopenia
DL -1 (n=6)	20 mg/m ²	125/90 mg/m ²	N=3 in Cycle 1	Thrombocytopenia
DL -2 (n=6)	15 mg/m ²	125/90 mg/m ²	N=1 in Cycle 1	Thrombocytopenia
PK DL-2 (n=4)	15 mg/m ²	125/90 mg/m ²	N=1 in Cycle 1	Mucositis

- RP2D: nab Sirolimus 15 mg/m² day 1 and 8, TMZ 125 mg/m² + IRN 90 mg/m² day 1-5 PO, q 21d
 One patient with EWS had PR received 35 cycles
- NCI Pediatric Early Phase Clinical Trials Network

Cramer, et al. ASCO 2022 Slide courtesy of Elizabeth Fox, MD

<section-header><text><image><list-item><list-item><list-item><list-item></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row>

Ν	CI Pediatric Early Phase Clinical Trials Network	ADVL14	11: Tal	azopa	rib + Temozolomide
	Talazoparib (mcg/m ²)	TMZ (mg/m²) d2-6	# Entered/ Evaluated	# patients with DLTs	DLT Detail
	400 daily d1-6	20	3/3	0	
	400 twice daily d1 Then daily d 2-6	20	3/3	0	
	600 twice daily d1 Then daily d 2-6	20	3/3	0	
	600 twice daily d1 Then daily d 2-6	30	7/6	1	•Neutropenia (Grade 4 x ≥7 days)
	600 twice daily d1 Then daily d 2-6	40	6/6	1 (2)	 •intra-abdominal hemorrhage (Grade 4) •neutropenia (Grade 4 x ≥7 days) •ALT (prolonged Grade 3) •≥2 platelet transfusions x 7 days
	600 twice daily d1 Then daily d 2-6 (PK)	55	3/3	2	•≥2 platelet transfusions x 7 days •neutropenia (Grade 4 x ≥7 days) •sepsis
	600 twice daily d1 Then daily d 2-6 (PK)	30	6/5	0	Slide courtesy of Elizabeth Fox, MD

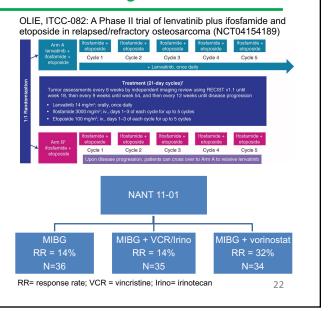
Synergy

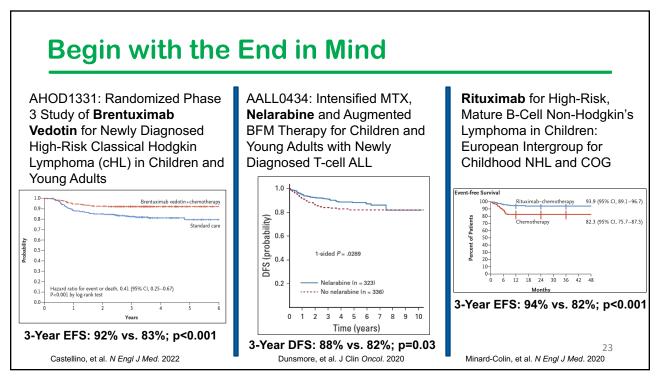
- Activity of the combination of two drugs is more than additive
- Mechanism of action of talazoparib indicated synergy with temozolomide
 - Trial demonstrated that toxicity was synergistic (very low doses of TMZ)
 No objective responses in 10 patients with EWS
- ONITT (Onyvide + Talazoparib or temozolomide NCT04901702) in patients with relapsed EWS
- Other DNA damage repair inhibitors (PARP, ATR, ATK) being evaluated as single agents

Slide courtesy of Elizabeth Fox, MD

Recommended Dose for Combination (RDC)

- Maximum tolerated dose (MTD) based only on doselimiting toxicity (DLT) observed during cycle 1 of dose-escalation phase
- RDC should also incorporate:
 - Cumulative toxicity after cycle 1 (DLTs and persistent toxicities impacting QOL)
 - PK and pharmacodynamic (PD) data
 - Dose modifications
- Dose optimization might also include intra-patient dose escalation (after achieving steady-state drug exposure, completion of DLT period, and response evaluation)
- Leverage optimal dosage- and exposure-response relationships for efficacy identified in adult studies


Serritella, et al. Clin Pharmacol Ther. 2020; Moreno, et al. J Clin Oncol. 2023



Evaluation of Anti-Tumor Activity

- Goal = identify promising regimens to take forward to later-stage trials
- Randomization is the most effective way to isolate effect of addition of novel agent
 - Randomized expansion phases, randomized selection, or screening designs (e.g. pick-the-winner)
 - Goal is to ensure that if one regimen is superior there is a high probability it will be selected (relaxed alpha)
 - Success defined by clinically acceptable response rate or progression-free survival
- Patients in dose-confirmation/escalation can be included in efficacy evaluation if they received the pediatric RDC

Gaspar, et al. Future Oncol. 2021; DuBois, et al. J Clin Oncol. 2021. Rubinstein, et al. J Clin Oncol. 2005

Conclusions (Key Points Revisited)

- Combinations should be developed based on the following:
 - Biology of childhood (not adult) cancers
 - Mechanism of action of the drugs (rather than adult indication)
 - Robust preclinical evaluation from in vivo models (genomically characterized)
 - Clinical activity for the agent (when known)
- Trials should be dose and schedule confirmatory, rather than exploratory, and move seamlessly to expansion cohorts or phase 2 in tumor or target of interest (efficiency is key!)
- Novel trial designs and randomization should be considered to improve efficiency and isolate effects (toxicity and anti-tumor) of novel agent
- Strategy should consider agent or combination's ultimate role in frontline therapy
- Early engagement of regulators and regulatory requirements for all drugs in essential
- Involving parent and patient advocates early and throughout development is critical

Moreno, et al. Nat Rev Clin Oncol. 2017; Pearson, et al. Eur J Cancer. 2016; 24 Pearson, et al. Lancer Oncol. 2017; Moreno, et al. J Clin Oncol. 2023